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S

When used for modelling longitudinal data generalised estimating equations specify a
working structure for the within-subject covariance matrices, aiming to produce efficient
parameter estimators. However, misspecification of the working covariance structure may
lead to a large loss of efficiency of the estimators of the mean parameters. In this paper
we propose an approach for joint modelling of the mean and covariance structures of
longitudinal data within the framework of generalised estimating equations. The resulting
estimators for the mean and covariance parameters are shown to be consistent and
asymptotically Normally distributed. Real data analysis and simulation studies show that
the proposed approach yields efficient estimators for both the mean and covariance
parameters.

Some key words: Cholesky decomposition; Efficiency; Generalised estimating equation; Longitudinal data;
Misspecification of covariance structure; Modelling of mean and covariance structures.

1. I

The technique of generalised estimating equations (Liang & Zeger, 1986) for the
modelling of longitudinal data specifies a working structure for the within-subject
covariance matrices, aiming to produce efficient estimators for the mean parameters. It is
well known that the resulting estimators of the mean parameters are consistent even
though the working covariance structure is misspecified. However, this may lead to a
great loss of efficiency of the mean parameter estimators (Wang & Carey, 2003). Also, if
longitudinal data contain certain missing values and/or are not Normally distributed, the
mean parameter estimators may be biased when the working covariance structure is
misspecified (Daniels & Zhao, 2003). A good covariance modelling approach improves
statistical inference of the mean of interest. Furthermore, the covariance structure itself
may be of scientific interest (Diggle & Verbyla, 1998).
However, modelling of covariance structures is challenging because there are many

parameters in covariance matrices and the estimated covariance matrices should be
positive definite. So-called sandwich-type methods have been proposed. For example,
Prentice & Zhao (1991) and Liang et al. (1992) use the products of all pairwise
observations to build new generalised estimating equations for the correlation parameters.
Carey et al. (1993) addressed the issue specifically for longitudinal binary and ordinal
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outcomes. Wang & Carey (2003) studied the effects of misspecification of covariance
structures on efficiency of the mean parameters. Wang & Carey (2004) further proposed
unbiased estimating equations for the correlation parameters by differentiating the
Cholesky decomposition of the working correlation matrix.
Instead of using the sandwich kind of working covariance structure, we use the modified

Cholesky decomposition (Pourahmadi, 1999) to decompose the within-subject covariance
matrices and then parsimoniously model the within-subject correlation and variation in
terms of simple regression models. We propose an approach for joint modelling of the
mean and covariance structures of longitudinal data within the framework of generalised
estimating equations. The resulting estimators for the mean and covariance parameters
are shown to be consistent and asymptotically Normally distributed. In comparison with
Pourahmadi’s (1999, 2000) method, the proposed approach does not require the Normal
distributional assumption and only assumes the existence of the first four moments of
responses. We extend Pourahmadi’s work from modelling balanced longitudinal data to
unbalanced data but within a broader framework, that is generalised estimating equations.
Compared to the conventional generalised estimating equations, on the other hand, the
proposed approach produces more efficient estimators for the mean parameters.

2. J -   

2·1. Modified Cholesky decomposition

Let y
ij
be the jth of m

i
measurements on the ith of n subjects. Assume that t

ij
is the

time at which the measurement y
ij
is made. Denote by y

i
= (y
i1

, y
i2

, . . . , y
im
i

)∞ and
t
i
= (t
i1

, t
i2

, . . . , t
im
i

)∞ the (m
i
×1) vectors of responses and measuring time points of the

ith subject. Suppose E(y
i
)=m
i
= (m

i1
, m
i2

, . . . , m
im
i

)∞ and var( y
i
)=S

i
are the (m

i
×1) mean

vector and (m
i
×m
i
) covariance matrix of y

i
, respectively. Without loss of generality, the

matrices S
i
are assumed to be positive definite.

Accordingly, there exists a unique lower triangular matrix T
i
with 1’s as diagonal

entries and a unique diagonal matrix D
i
with positive diagonals such that T

i
S
i
T ∞
i
=D
i
.

This modified Cholesky decomposition has a clear statistical interpretation: the below-
diagonal entries of T

i
are the negatives of the autoregressive coefficients, w

ijk
, in the

autoregressive model

y@
ij
=m
ij
+ ∑
j−1

k=1
w
ijk

(y
ik
−m
ik
), (1)

that is the linear least squares predictor of y
ij
based on its predecessors y

i(j−1)
, . . . , y

i1
.

On the other hand, we can show that the diagonal entries of D
i
are the prediction

error/innovation variances s2
ij
=var(e

ij
), where e

ij
=y
ij
−y@
ij
and y@

ij
are given in (1)

(1∏ j∏m
i
; 1∏ i∏n) (Pourahmadi, 1999). Obviously, we have cov(e

ij
, e
ik
)=0 if jNk.

Throughout this paper we refer to w
ijk
as generalised autoregressive parameters and to

s2
ij
as innovation variances. It follows immediately that S−1

i
=T ∞
i
D−1
i

T
i
.

2·2. Generalised linear models

In the spirit of Pourahmadi (1999), we propose three generalised linear models for
modelling the mean, generalised autoregressive parameters and innovation variances:

g(m
ij
)=x∞
ij
b, w

ijk
=z∞
ijk
c, log s2

ij
=z∞
ij
l, (2)
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929Modelling of covariance structures

where x
ij
, z
ijk
and z

ij
are ( p×1), (q×1) and (d×1) vectors of covariates and b, c and l

are the associated parameters. The link function g ( . ) is assumed to be monotone and
differentiable. The covariates x

ij
, z
ijk
and z

ij
may contain baseline covariates, polynomials

in time and their interactions as well. For example, when we use polynomials in time to
model the mean, generalised autoregressive parameters and innovation variances the
covariates may take the forms

x
ij
= (1, t

ij
, t2
ij
, . . . , tp−1

ij
)∞,

z
ijk
= (1, (t

ij
−t
ik
), (t
ij
−t
ik
)2, . . . , (t

ij
−t
ik
)q−1 )∞,

z
ij
= (1, t

ij
, t2
ij
, td−1
ij

)∞,

(3)

provided that the within-subject correlation only depends on the elapsed time
(i=1, . . . , n; j=1, . . . , m

i
). An advantage of the use of the generalised linear models (2) is

that the resulting covariance matrices are positive definite (Pourahmadi, 1999). Moreover,
in the generalised linear models (2) the assumption of homogeneous covariances across
subjects becomes testable (Pan & MacKenzie, 2003).

3. G   

3·1. Generalised estimating equations

To obtain generalised estimating equations, rather than specifying a working covariance
structure, we model jointly the mean and covariance structures of responses in terms of the
generalised linear models (2). We therefore propose the following generalised estimating
equations for the mean, generalised autoregressive parameters and innovation variances,
respectively:

S
1
(b)= ∑

n

i=1
A∂m∞i∂b BS−1i (y

i
−m
i
), S

2
(c)= ∑

n

i=1
A∂r@∞i∂cBD−1i (r

i
−r@
i
),

S
3
(l)= ∑

n

i=1
A∂s2∞i∂l BW−1i (e2

i
−s2
i
),

(4)

where r
i
and r@

i
in S2 (c) are the (mi×1) vectors with jth components r

ij
=y
ij
−m
ij

and r@
ij
=E(r

ij
|r
i1

, . . . , r
i(j−1)

)=Wj−1
k=1
w
ijk

r
ik
( j=1, . . . , m

i
), respectively. Note that when

j=1 the notation W0
k=1

means zero throughout this paper. We can show that
D
i
=diag (s2

i1
, . . . , s2

im
i

) in S2 (c) is actually the covariance matrix of r
i
−r@
i
. On the

other hand, e2
i
and s2

i
in S3 (l) are the (mi×1) vectors with jth components e2

ij
and s2

ij
( j=1, . . . , m

i
), respectively, where e

ij
=y
ij
−y@
ij
and y@

ij
are given in (1). Obviously, we

have E(e2
i
)=s2
i
. In addition, W

i
is the covariance matrix of e2

i
; that is, W

i
=var(e2

i
). The

solutions of the generalised estimating equations, b@ , c@ and l@ say, are termed the generalised
estimating equation estimators of b, c and l.
In (4), ∂m∞

i
/∂b is the ( p×m

i
) matrix with jth column ∂m

ij
/∂b=g<−1 (xijb)xij , where g<−1 ( . )

is the derivative of the inverse function g−1 ( . ), ∂r@∞
i
/∂c is the (q×m

i
) matrix with jth column

∂r@
ij
/∂c=Wj−1

k=1
r
ik
z
ijk

, and ∂s2∞
i

/∂l is the (d×m
i
) matrix with jth column ∂s2

ij
/∂l=s2

ij
z
ij

(i=1, . . . , n; j=1, . . . , m
i
). The idea behind (4) is to treat the generalised autoregressive

parameters and innovation variances as being as important as the mean when modelling
longitudinal data. In contrast to the mean equation S1 (b), r

i
in S
2
(c) and e2

i
in S
3
(l)
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play a role similar to that of responses in the estimation of c and l, which can be viewed
as working responses when modelling the generalised autoregressive parameters and
innovation variances.
Note that S3 (l) in (4) involves the covariance matrices W

i
of e2
i
. When the responses y

i
are Normally distributed, it is obvious that e

i
~N
m
i

(0, D
i
). Since D

i
is diagonal, e

ij
and e

ik
( jNk) are independent and so e2

ij
and e2

ik
( jNk) are independent as well. On the other

hand, since e2
ij
/s2
ij
~x2
1
it is obvious that var (e2

ij
)=2s4

ij
. Therefore, if y

i
~N
m
i

(m
i
, S
i
) we

then have W
i
=2 diag (s4

i1
, . . . , s4

im
i

). In this case the generalised estimating equations (4)
reduce to Pourahmadi’s (2000) Normal score equations, though he only considered
modelling of balanced longitudinal data there. We will explain this equivalence in more
detail in § 3·3. When the responses y

i
are not Normally distributed, the covariance matrices

W
i
of e2
i
are in general no longer diagonal and remain unknown. In fact, it is very trouble-

some to calculate the W
i
’s in this case and their analytically explicit forms may not exist

even for some special family of distributions such as the exponential family of distributions
or the quadratic exponential family of distributions (Prentice & Zhao, 1991). In the
spirit of the conventional generalised estimating equations, we propose to use a sand-
wich ‘working’ covariance structure W

i
=AD
i
R
i
(r)AD
i
to approximate the true W

i
’s, where

A
i
=2 diag (s4

i1
, . . . , s4

im
i

) and R
i
(r) mimic the correlation between e2

ij
and e2

ik
(iNk) by

introducing a new parameter r. Typical structures for R
i
(r) include compound symmetry

and  (1). As with the conventional generalised estimating equations for the mean, the
parameter r may have little effect on the estimates of c and l. Our real data analysis and
simulation studies reported in later sections confirm this point very well. It implies that
the resulting estimators of parameters in the mean, generalised autoregressive parameters
and innovation variances are robust against misspecification of R

i
(r), as does the efficiency

of the estimators of the mean parameters of interest.

3·2. Estimators of parameters

The estimators of b, c and l satisfy the equations

S
1
(b)=0, S

2
(c)=0, S

3
(l)=0, (5)

where S1 (b), S2 (c) and S3 (l) are given in (4). In general numerical solution is necessary,
and in this paper we use a quasi-Fisher scoring algorithm. We first calculate the quasi-
Fisher information matrix I

h
, defined by the expectation of minus the derivative of the

score function S∞(h)= (S∞
1
(b), S∞

2
(c), S∞

3
(l)) with respect to h, where h= (b∞, c∞, l∞)∞. It can be

shown that I
h
is block diagonal; that is, I

h
=diag(I

b
, I
c
, I
l
) with

I
b
= ∑
n

i=1
A∂m∞i∂b BS−1i A∂m∞i∂b B∞, I

c
= ∑
n

i=1
EqA∂r@∞i∂cBD−1i A∂r@∞i∂cB∞r ,

I
l
= ∑
n

i=1
A∂s2∞i∂l BW −1i A∂s2∞i∂l B∞ ,

(6)

where I
c
can be further simplified into

I
c
= ∑
n

i=1
∑
m
i

j=1
s−2
ij
∑
j−1

k=1
∑
j−1

l=1
s
ikl

z
ijk

z∞
ijl

(7)
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931Modelling of covariance structures

and s
ikl
is the (k, l )th element of the covariance matrix S

i
. Therefore, given S

i
, the

estimators of the mean parameters b can be updated by

b@=q ∑n
i=1
A∂m∞i∂b BS−1i A∂m∞i∂b B∞r−1q ∑n

i=1
A∂m∞i∂b BS−1i yA ir , (8)

where yA i= (y
i
−m
i
)+ (∂m∞

i
/∂b)∞b. When g ( . ) is the identity link, we have yA i¬y

i
. On the

other hand, given b and l the values for the generalised autoregressive parameters c can
be updated approximately through

c@=C ∑n
i=1

EqA∂r@∞i∂cBD−1i A∂r@∞i∂cB∞rD−1q ∑n
i=1
A∂r@∞i∂cBD−1i r

ir . (9)

Finally, given b and c the values for the innovation variance parameters l can be updated
using

l@=q ∑n
i=1
A∂s2∞i∂l BW −1i A∂s2∞i∂l B∞r−1q ∑n

i=1
A∂s2∞i∂l BW −1i eA2i r , (10)

where eA2i= (e2
i
−s2
i
)+D

i
log s2

i
and log s2

i
stands for the (m

i
×1) vector with jth

component log s2
ij

(i=1, . . . , n; j=1, . . . , m
i
).

Equations (8)–(10) indicate that, iteratively, the set of all parameters can be estimated
using weighted generalised least squares. Moreover, approximate variance-covariance
matrices of the estimators b@ , c@ and l@ can be calculated through the inverses of the
quasi-Fisher information matrices I

b
, I
c
and I

l
, respectively, evaluated at b@ , c@ and l@ .

In summary, the algorithm below is used to calculate the parameter estimates in the
mean-covariance models in (2).

A
Step 1. Given a starting value h(0)= (b(0)∞, c(0)∞, l(0)∞ )∞, use the generalised linear models (2)

to form the lower triangular matrices T (0)
i

and diagonal matrices D(0)
i

. T hen S(0)
i
, the starting

values of S
i
, are obtained.

Step 2. Use the weighted generalised least squares estimators (8)–(10) to calculate the
estimators b(1), c(1) and l(1) of the parameters b, c and l, respectively.

Step 3. Replace b(0), c(0) and l(0) with the estimators b(1), c(1) and l(1). Repeat Steps 1–2
until convergence of the parameter estimators.

A convenient starting value for (c∞, l∞)∞ is c(0)=0 and l(0)=0. In other words, the (m
i
×m
i
)

identity matrix may be chosen as the starting value for the covariance matrix S
i
.

3·3. Asymptotic properties

The consistency and asymptotic Normality of the generalised estimating equation
estimators b@ , c@ and l@ are presented in Theorems 1–2 below. Their proofs are deferred to
the Appendix.

T 1. Suppose there is only one root h@
n
= (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞ of the generalised estimating

equations (4). Under some mild regularity conditions stated in the Appendix the generalised
estimating equation estimator h@

n
= (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞ is strongly consistent for the true value

h
0
= (b∞

0
, c∞
0
, l∞
0
)∞; that is, h@

n
= (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞� h

0
= (b∞

0
, c∞
0
, l∞
0
)∞ almost surely as n�2.
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The proof of asymptotic Normality involves computation of the covariance matrix
of the function S(h)/√n= (S∞

1
(b), S∞

2
(c), S∞

3
(l))∞/√n, denoted by V

n
= (vkl
n
)
k,l=1,2,3

, where
vkl
n
=n−1 cov (S

k
, S
l
) for kN l and vkk

n
=n−1 var (S

k
) (k, l=1, 2, 3). When evaluated at the

true value h0 the covariance matrix V
n
is assumed to be positive definite. Furthermore, at

h0 we assume that

V
n
=Av11n v12

n
v13
n

v21
n

v22
n

v23
n

v31
n

v32
n

v33
n
B� V=Av11 v12 v13

v21 v22 v23

v31 v32 v33B (11)

as n�2. The constant matrix V in (11) is also assumed to be positive definite.

T 2. Suppose that (11) above is true. Under some necessary regularity conditions
stated in the Appendix the generalised estimating equation estimator h@

n
= (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞

is asymptotically Normally distributed, with

√nAb@ n−b0c@
n
−c
0

l@
n
−l
0
B�NG0, Av11 0 0

0 v22 0

0 0 v33B−1Av11 v12 v13

v21 v22 v23

v31 v32 v33BAv11 0 0

0 v22 0

0 0 v33B−1H
in distribution as n�2, where the matrices vkl are evaluated at the true value h=h0
(k, l=1, 2, 3).

Note that when the responses y
i
are Normally distributed we have vkl=0 (kN l) and

then the asymptotic covariance matrix above reduces to {diag(v11, v22, v33 )}−1. In other
words, the asymptotic covariance matrix is equal to n times the inverse of the quasi-Fisher
information matrix, nI−1

h
. By analysing balanced longitudinal data, Pourahmadi (2000)

obtained the Fisher information matrix I
h
from the Normal likelihood. He concluded

that the off-diagonal blocks I
cb
and I

lb
are equal to zero whereas I

lc
=−nZ∞D−1B,

where Z is the design matrix for the log-innovation variances, B= (b1 , . . . , bm )∞ is a matrix
with b

t
=Wt−1
k=1

a
kt
z
tk
and a

kt
is the (k, t)th entry of the matrix A=ST ∞ (t=1, . . . , m); see the

Appendix of Pourahmadi (2000). Since A=ST ∞=T −1D, a product of the lower triangular
matrix T −1 and the diagonal matrix D, the matrix A is actually a lower triangular matrix.
Accordingly, when k<t we have a

kt
=0 so that b

t
=0 for t=1, . . . , m. In other words,

we obtain I
lc
=0 because B=0. Therefore, Pourahmadi’s (2000) asymptotic covariance

matrix is actually block diagonal. We conclude that under the Normal distribution
assumption our proposed approach reduces precisely to Pourahmadi’s (2000) method.

4. T  

The classical score test is based on the first and second derivatives of the loglikelihood
evaluated at the parameter estimators under the null hypothesis (Cox & Hinkley, 1974).
Within the framework of the generalised estimating equations (4), the quasi-score test
based on the derivative of the generalised estimating equations can be constructed and
used to undertake tests of hypotheses.
For example, suppose that we are interested in testing H0 : b=b0 , where b0 is a fixed

p-dimensional vector. Let a= (c∞, l∞)∞ and S23 (a)= (S2 (c)∞, S3 (l)∞)∞. The covariance matrix
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933Modelling of covariance structures

V
n
of S(h)/√n= (S∞

1
(b), S∞

23
(a))∞/√n is partitioned into

V
n
=Av11n v1a

n
va1
n

vaa
n
B ,

where

vaa
n
=Av22n v33

n
v32
n

v33
n
B , v1a

n
= (v12
n

, v13
n

)= (va1
n

)∞.

For this H0 , the parameters a= (c∞, l∞)∞ are nuisance parameters. Hence the quasi-score
test statistic for H0 : b=b0 is of the form

J
b
0

=n−1S
1
(b
0
, a@
0
)∞V b
0
b
0n
(a@
0
)S
1
(b
0
, a@
0
), (12)

where a@0 is the generalised estimating equation estimator of a under H0 , S1 (b0 , a@0 ) is the
score function S1 (b0 ) but with a replaced by a@0 and

V b
0
b
0n
(a@
0
)={v11

n
−v1a
n

(vaa
n

)−1va1
n

}−1 |
a=a@
0
,b=b
0

.

It can be shown that, under H0 , J
b
0

~x2
p
asymptotically.

On the other hand, we may wish to test H0 : c=c0 and l=l0 , where c0 and l0 are fixed
q- and d-dimensional vectors, respectively. The quasi-score test statistic is then of the form

J
a
0

=n−1S
23

(b@
0
, a
0
)∞V a
0
a
0n
(b@
0
)S
23

(b@
0
, a
0
), (13)

where a
0
= (c∞
0
, l∞
0
)∞, b@0 is the generalised estimating equation estimator of b under the

null hypothesis H0 : c=c0 and l=l0 , S23 (b
@
0 , a0 ) is the score function S23 (a0 ) but with

b replaced by b@0 and V a
0
a
0n
(b@
0
)={vaa

n
−v1a
n

(v11
n

)−1va1
n

}−1 |
b=b@
0
,a=a
0

. Under H0 , Ja
0

~x2
q+d

asymptotically.
Similar procedures exist for testing H0 : c=c0 or H0 : l=l0 but the details are
omitted here.

5. A   CD4+  

We reanalyse the CD4+ cell data (Diggle et al., 2002) comprising CD4+ cell counts
for 369 -infected men. Altogether there are 2376 values of CD4+ cell counts, with
several repeated measurements being made for each individual at different times covering
a period of approximately eight and a half years. The number m

i
of measurements for

each individual varies from 1 to 12 and the times are not equally spaced. The CD4+ cell
data are highly unbalanced. For further details about design and medical implications of
the study we refer to Diggle et al. (2002).
The objective of our analysis is to model jointly the mean and covariance structures

for the CD4+ cell data. Based on the principle of model selection and our experience
of nonparametric modelling for this dataset, we propose to use three polynomials in
time, one of degree 6 and two cubics, to model the mean parameters, the generalised
autoregressive parameters and the innovation variances; that is, the covariates x

ij
, z
ijk

and z
ij
take the same forms as in (3) with p=7, q=4 and d=4. Note that there are 54

individuals, about 15%, for whom m
i
is less than q and d, implying that the dimensions

of the covariates z
ijk
and z

ij
can be greater than the number of repeated measurements of

some subjects.
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We treat the CD4+ cell data as continuous and take the function g ( . ) to be the identity
link. We consider two kinds of correlation structure, compound symmetry and  (1),
for the matrices R

i
(r) in W

i
=AD
i
R
i
(r)AD
i
, the working covariance structures of e2

i
. In

each case the parameter r measuring the correlation between e2
ij
= (y
ij
−y@
ij
)2 and

e2
ik
= (y
ik
−y@
ik
)2 takes different values, r=0·2, 0·5 and 0·8, so that effects of misspecification

of R
i
(r) on the generalised estimating equation estimators b@ , c@ and l@ can be studied.

We also look at the extreme case r=0, corresponding to the model with a Normal
distribution. Table 1 presents the parameter estimate and the associated standard errors,
in parentheses, based on the compound symmetry structure; the results obtained based
on the  (1) structure were very similar.

Table 1: T he CD4+ cell data. Generalised estimating equation estimates
of parameters in the mean, generalised autoregressive parameters and
innovation variances based on compound symmetry structure, with

standard errors in parentheses

Compound symmetry
Normal r=0·2 r=0·5 r=0·8

b1 875·22 (15·25) 875·93 (15·33) 876·20 (15·35) 876·31 (15·36)
b2 −207·27 (13·23) −205·85 (13·11) −205·48 (13·05) −205·38 (13·02)
b3 −22·48 (8·38) −22·82 (8·69) −22·87 (8·88) −22·88 (8·97)
b4 32·21 (4·77) 31·64 (4·73) 31·46 (4·72) 31·40 (4·72)
b5 −1·31 (0·91) −1·20 (0·94) −1·17 (0·96) −1·17 (0·98)
b6 −1·92 (0·48) −1·87 (0·49) −1·85 (0·49) −1·85 (0·50)
b7 0·25 (0·06) 0·24 (0·06) 0·24 (0·06) 0·24 (0·06)

c1 0·62 (0·04) 0·62 (0·04) 0·61 (0·04) 0·61 (0·04)
c2 −0·51 (0·06) −0·50 (0·06) −0·49 (0·06) −0·49 (0·06)
c3 0·15 (0·03) 0·14 (0·03) 0·14 (0·02) 0·14 (0·02)
c4 −1·45×10−2 −1·40×10−2 −1·38×10−2 −1·37×10−2

(3·06×10−3 ) (2·95×10−3 ) (2·90×10−3 ) (2·88×10−3 )

l1 11·55 (0·03) 11·55 (0·04) 11·55 (0·04) 11·55 (0·05)
l2 −0·34 (0·02) −0·37 (0·02) −0·38 (0·02) −0·39 (0·03)
l3 −4·71×10−2 −4·39×10−2 −4·38×10−2 −4·27×10−2

(8·66×10−3 ) (8·11×10−3 ) (8·25×10−3 ) (8·69×10−3 )
l4 1·80×10−2 1·45×10−2 1·27×10−2 1·19×10−2

(2·29×10−3 ) (2·13×10−3 ) (1·72×10−3 ) (1·70×10−3 )

In Table 1 it is shown that the parameter r has little effect on the estimators of b, c
and l, implying that the generalised estimating equation estimators of parameters are
robust against misspecification of the structure of R

i
(r). This point is confirmed by our

simulation studies in § 6. Figure 1 displays the three fitted curves when R
i
(r) is specified

by  (1) with r=0·5. Bands made up of the asymptotic 95% confidence intervals are
also provided. The mean curve of CD4+ cells changes slowly before seroconversion, at
t=0, and then drops steeply before levelling off after two years. The resulting mean
trajectory is close to the Diggle et al. (2002) fitted curve based on a smoothing spline.
The structures of the generalised autoregressive parameters and (log)innovation variances
both clearly display a cubic polynomial pattern.
Next, we compare the proposed approach with the conventional generalised estimating

equations in terms of relative efficiency of the estimators of the mean parameters b. The
relative efficiency of b

k
(k=1, . . . , p) is the ratio of the variance of the conventional
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Fig. 1: The CD4+ cell data. The fitted curves of (a) the mean against time, (b) the
generalised autoregressive parameters against lag and (c) the ( log)innovation variances

against time. Dashed curves represent asymptotic 95% confidence intervals.

estimator b@C
k
to the variance of the new estimator b@N

k
.

e(b@
k
)=var (b@C

k
)/var (b@N

k
). (14)

For simplicity, the same working correlation structure is used in both approaches in
our analysis. The values for e(b@

k
) were almost all in the range 1·07–1·19 for the case of

compound symmetry and in the range 1·20–1·67 for the  (1) case. Obviously, the
efficiency of the conventional estimators can be improved by using the new approach.
Finally, we use the quasi-score test statistic (13) to test if the null hypothesis H0 : c=0
and l=0 is true. We find that the value of the test statistic is very large when compared
to the x2 distribution with q+d=8 degrees of freedom. This also occurs when testing
H0 : c=0 or H0 : l=0, which implies that there are strong within-subject correlations or
heterogeneous innovation variances for the CD4+ cell data.

6. A  

In the simulation study we use the same design protocol as in the CD4+ cell data.
We generate 1000 random samples from Normal and Normal-mixture distributions,
respectively. Each sample comprises 369 subjects and the m

i
’s, the numbers of repeated

measurements, are the same as in the real CD4+ data. The Normal distribution studied
is N
m
i

(m
i
, S
i
) and the Normal-mixture distribution is

F
m
i

=pN
m
i

(m
i
+d
i
, S
i
)+ (1−p)N

m
i

(m
i
, S
i
) (i=1, 2, . . . , 369),
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where m
i
and S

i
are formed using the parameter estimates in the real data analysis in § 5,

p is the mixing weight and d
i
is the mean-shift parameter. In order to see how the pro-

posed approach behaves under different levels of mixtures, we choose p=0·25, 0·5, 0·75
and d

i
=m
i
/10, m

i
/5, m

i
/3. Therefore in total we consider nine different combinations of

mixtures. The mean is modelled by a 6th-degree polynomial in time and the generalised
autoregressive parameters and log-innovation variances by cubic polynomials in lag and
time. In each random sample there are about 15% of subjects, 54 out of 369, satisfying
m
i
<q and m

i
<d; in other words, the number of repeated measures is less than the

dimensions of z
ijk
and z

ij
.

In Table 2 we report the averages of the parameter estimate for the simulated
data from the Normal distribution, together with the averages of the simulated standard
deviations in parentheses. The parameter r in W

i
=AD
i
R
i
(r)AD
i
takes values 0·2, 0·5 and

0·8 so that the effects of misspecification of W
i
on the parameter estimators can be

measured, where R
i
(r) are specified with  (1) structure. Table 2 shows that the resulting

parameter estimators are very close to the true values, implying that the proposed
approach works well for unbalanced longitudinal data even when some of the m

i
are less

than q and d. Moreover, the estimators b@ , c@ and l@ are robust against misspecification
of R
i
(r).

Table 2: Simulation study. Average of the parameter estimates for 1000 random
samples generated from the Normal distribution (simulated standard errors are
in parentheses), where (1) structures are specified for the covariances of e2

i
True r=0·2 r=0·5 r=0·8

b1 875·22 874·74 (14·04) 874·74 (14·06) 874·76 (14·09)
b2 −207·27 −207·37 (11·93) −207·37 (11·94) −207·38 (11·97)
b3 −22·48 −22·31 (7·32) −22·31 (7·32) −22·31 (7·34)
b4 32·21 32·15 (4·68) 32·15 (4·69) 32·16 (4·70)
b5 −1·31 −1·32 (0·79) −1·32 (0·79) −1·32 (0·79)
b6 −1·92 −1·91 (0·47) −1·91 (0·47) −1·91 (0·47)
b7 0·25 0·25 (0·06) 0·25 (0·06) 0·25 (0·06)

c1 0·62 0·62 (0·04) 0·62 (0·04) 0·62 (0·04)
c2 −0·51 −0·51 (0·07) −0·51 (0·07) −0·51 (0·07)
c3 0·15 0·15 (0·03) 0·15 (0·03) 0·15 (0·03)
c4 −0·02 −0·02 (3·59×10−3 ) −0·02 (3·59×10−3 ) −0·02 (3·60×10−3 )

l1 11·55 11·55 (0·04) 11·55 (0·05) 11·55 (0·06)
l2 −0·34 −0·34 (0·03) −0·34 (0·03) −0·34 (0·04)
l3 −0·05 −0·05 (0·01) −0·05 (0·01) −0·05 (0·02)
l4 0·02 1·98×10−2 1·98×10−2 1·98×10−2

(3·49×10−3 ) (3·81×10−3 ) (4·51×10−3 )

Table 3 gives the simulated efficiencies of the estimators b@ relative to the conventional
approach. The same working correlation structure, either compound symmetry or  (1),
is specified for y

i
and e2

i
. We also look at efficiency on different degrees of the within-

subject correlation by choosing different values of r. The relative efficiency is of the same
form as (14) but the variance matrix of b@ has the more accurate form

var (b@ )=A ∑n
i=1

X∞
i
SC−1
i

X
iB−1A ∑n

i=1
X∞
i
SC−1
i
S
i
SC−1
i

X
iBA ∑n
i=1

X∞
i
SC−1
i

X
iB−1, (15)
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937Modelling of covariance structures

Table 3: Simulation study. Average of relative
eYciency of the mean parameters b

k
for 1000

random samples from the Normal distribution,
with compound symmetry and (1) structures
being specified for the covariances of y

i
and e2

i
Compound symmetry (1) model

Value of r Value of r
0·2 0·5 0·8 0·2 0·5 0·8

e(b@1 ) 1·56 1·93 2·63 1·51 1·54 1·91
e(b@2 ) 1·82 1·92 2·05 1·77 1·90 2·35
e(b@3 ) 1·67 1·82 1·93 1·57 1·75 2·32
e(b@4 ) 1·66 1·76 1·82 1·57 1·73 2·06
e(b@5 ) 1·96 2·11 2·21 1·76 1·92 2·35
e(b@6 ) 1·71 1·83 1·90 1·57 1·69 1·97
e(b@7 ) 2·08 2·21 2·28 1·83 1·90 2·17

where S
i
are the true covariance matrices, and b@ and SC

i
are the estimators of b and S

i
,

obtained by either the conventional or our proposed approach. Table 3 confirms the
conclusion in § 5, that the mean-covariance modelling strategy leads to improvement.
Since, for the Normal mixture distribution F

m
i

=pN
m
i

(m
i
+d
i
, S
i
)+ (1−p)N

m
i

(m
i
, S
i
),

the expectation and variance are mA i=mi+pdi and SB i=Si+p(1−p)did∞i , it is not appro-
priate to compare directly the parameter estimators b@ in mA i and (c@, l

@ ) in SB
i
to the true

values of b in m
i
and (c, l) in S

i
unless p=0 or d

i
=0. We therefore compare the estimated

mean m@ i and covariance matrix SC i to the true values of mA i and SB i . For example, relative
errors defined by err(m@

i
)¬dm@

i
−mA id/dmA id and err(SC i )¬dSC i−SB id/dSB id can be used, whered .d denotes the Euclidean norm. Table 4 gives the averages of relative errors for each

combination of p and d
i
, showing that the resulting mean estimators are very close to the

true values in all cases. The relative error of the covariance matrix estimators, err(SC
i
),

seems to increase with the mean-shift parameter d
i
but changes little when the mixing

weight p varies. In some cases err(SC
i
) almost reaches 20% but we regard this as acceptable

Table 4: Simulation study. Average of relative
errors err (m@ )=Wn

i=1
err (m@

i
)/n and err(SC )=

Wn
i=1
err(SC

i
)/n for 1000 random samples from

the Normal Mixture distribution, with  (1)
structure and r=0·5 being specified for the

covariances of e2
i

(p, d
i
) err (m@ ) err(SC )

(0·25, m
i
/10) 5·90×10−3 0·02

(0·25, m
i
/5) 1·08×10−2 0·06

(0·25, m
i
/3) 1·60×10−2 0·14

(0·50, m
i
/10) 6·11×10−3 0·02

(0·50, m
i
/5) 1·13×10−2 0·08

(0·50, m
i
/3) 1·58×10−2 0·19

(0·75, m
i
/10) 4·40×10−3 0·02

(0·75, m
i
/5) 6·61×10−3 0·07

(0·75, m
i
/3) 8·15×10−3 0·16
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because dSC
i
−SB
i
d is based on matrices as large as 12×12. Therefore, the approach behaves

well even for unbalanced Normal mixture data.
The relative efficiencies associated with the mean parameters are very similar to those
for the Normal case. We therefore conclude that the approach produces efficient estimators
of the mean parameters even for nonnormally distributed data. Finally, the quasi-score
test statistics in § 4 are used to test the null hypotheses H0 : c=0 and l=0, H0 : c=0 and
H0 : l=0. We find that their empirical powers are very close to 1 and their empirical sizes
are equal to 0·06, 0·04 and 0·03, respectively, showing that the proposed quasi-score test
approach works reasonably well.

7. D

We also studied the balanced case by analysing Kenward’s cattle data and conducted
the relevant simulation study. The proposed approach also works well in this case; to
save space the details are not reported here. On the other hand, when longitudinal data
are balanced the degree triple ( p, q, d) may be determined by observing the regressograms
(Pourahmadi, 1999). In general, it can be determined as the triple that optimises a criterion
such as  or  when the distribution of the responses is known (Pan & MacKenzie,
2003).
Though the methodology works well for a continuous nonnormal distribution under

some moment conditions, its applicability to data from discrete distributions requires
more attention. Note that the generalised autoregressive parameters and log of innovation
variances are generally constrained when S

i
is structured and this happens for binary and

other discrete data. Thus, the use of the last two models in (2) requires a careful choice
of z
ijk
and z

ij
in such cases.

A
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The work was supported by a grant from the Engineering and Physical Sciences Research
Council and an Overseas Research Scholarship of the U.K.

A

Proofs of theorems

Regularity conditions.

Condition A1. We assume that the dimensions p, q and d of the covariates x
ij
, z
ijk
and z

ij
are

fixed, and that the numbers m
i
of repeated measurements are fixed. We also assume that the first

four moments of the responses exist.

Condition A2. The parameter space H is a compact subset of Rp+q+d, and the true parameter
value h0 is in the interior of the parameter space H.

Condition A3. The covariates x
ij
, z
ijk
and z

ij
, the vectors

g<−1 (X
i
b)= (g<−1 (x∞

i1
b), . . . , g<−1 (x∞

im
i

b))∞

and the matrices W −1
i
are all bounded, meaning that all the elements of the vectors and matrices

are bounded.
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939Modelling of covariance structures

Proof of T heorem 1. For illustration we only give the proof that b@
n
�b0 almost surely. The proofs

for c@
n
and l@

n
are similar. According to McCullagh (1983) we have

b@
n
−b
0
=q1n ∑n

i=1
A∂m∞i∂b BS−1i A∂m∞i∂b B∞r−1

b
0

q1n ∑n
i=1
A∂m∞i∂b BS−1i (y

i
−m
i
)r
b
0

+o
p
(n−1/2 ). (A1)

On the other hand, the expectation and variance matrix of U
i
¬ (∂m∞

i
/∂b)S−1

i
(y
i
−m
i
) at b=b0 are

given by E0 (Ui )=0 and

var
0
(U
i
)=qA∂m∞i∂b BS−1i A∂m∞i∂b B∞r

b
0

= (G0
i
X
i
)∞S−1
i

(G0
i
X
i
), (A2)

where G0
i
=diag (g<−1 (x∞

i1
b
0
), . . . , g<−1 (x∞

im
i

b
i
)) is an (m

i
×m
i
) diagonal matrix. Since S−1

i
=T ∞
i
D−1
i

T
i

the variance matrix in (A2) can be further written as var0 (Ui )= (T
i
G0
i
X
i
)∞D−1
i

(T
i
G0
i
X
i
). Condition

A3 above implies that there exists a constant k0 such that var0 (Ui )∏k01p×p for all i and all hµH,
where 1

p×p
is the ( p×p) matrix with all elements being 1’s, meaning that all elements of var0 (Ui )

are bounded by k0 . Thus W
2
i=1
var
0
(U
i
)/i2<2. By Kolmogorov’s strong law of large numbers we

know that

q1n ∑n
i=1
A∂m∞i∂b BS−1i (y

i
−m
i
)r
b
0

� 0 (A3)

almost surely as n�2. In the same manner it can be shown that

q1n ∑n
i=1
A∂m∞i∂b BS−1i A∂m∞i∂b Br

b
0

in (A1) is a bounded matrix. Application of (A3) to (A1) leads to b@
n
−b0� 0 almost surely as

n�2. The proof is complete. %

Proof of T heorem 2. First, it can be shown that under Conditions A1–A3 the following necessary
conditions for asymptotic Normality hold.

Condition A4. The equations in (4) and their derivatives with respect to b, c and l exist.

Condition A5. The expectations of the equations in (4) are equal to zero.

Condition A6. The information matrices satisfy

ECqA∂m∞i∂b BS−1i (y
i
−m
i
)rqA∂m∞i∂b BS−1i (y

i
−m
i
)r∞D=−EC ∂∂bqA∂m∞i∂b BS−1i (y

i
−m
i
)r∞D ,

ECqA∂r@∞i∂cBD−1i (r
i
−r@
i
)rqA∂r@∞i∂cBD−1i (r

i
−r@
i
)r∞D=−EC ∂∂cqA∂r@∞i∂cBD−1i (r

i
−r@
i
)r∞D ,

ECqA∂s2∞i∂l BW −1i (e2
i
−s2
i
)rqA∂s2∞i∂l BW−1i (e2

i
−s2
i
)r∞D=−EC ∂∂lqA∂s2∞i∂l BW −1i (e2

i
−s2
i
)r∞D .

Condition A7. Recall that h= (b∞, c∞, l∞)∞ and S(h)= (S∞
1
(b), S∞

2
(c), S∞

3
(l))∞. As n�2 we have that

1

n

∂S∞(h)
∂h
−

1

n
E
0q∂S∞(h)∂h r� 0

almost surely, where E0{.} stands for the expectation evaluated at the true value h=h0 .
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Condition A8. The following asymptotic result holds at h=h0 :

1

√nGS1 (b)S
2
(c)

S
3
(l)H�NG0, Av11 v12 v13

v21 v22 v23

v31 v32 v33BH
in distribution as n� 0, where the asymptotic variance matrix is positive definite.

Conditions A4–A6 are straightforward under Conditions A1–A3. Condition A7 can be obtained
in a similar manner to the proof of Theorem 1. Below we give a proof of Condition A8. In fact,
Condition A3 implies that

E
0CKy∞qA∂m∞i∂b BS−1i (y

i
−m
i
)r+v∞qA∂r@∞i∂cBD−1i (r

i
−r@
i
)r+Q∞qA∂s2∞i∂l BW −1i (e2

i
−s2
i
)rK3D∏k

for any yµRp, vµRq and QµRd, where k is a constant independent of i. Moreover, at h=h0 we
have

1

n
∑
n

i=1
V
0Cy∞qA∂m∞i∂b BS−1i (y

i
−m
i
)r+v∞qA∂r@∞i∂cBD−1i (r

i
−r@
i
)r+Q∞qA∂s2∞i∂l BW −1i (e2

i
−s2
i
)rD

= (y∞, v∞, Q∞)Av11n v12
n

v13
n

v21
n

v22
n

v23
n

v31
n

v32
n

v33
n
BAyvQB

� (y∞, v∞, Q∞)Av11 v12 v13

v21 v22 v23

v31 v32 v33BAyvQB>0,

because of the positive definiteness of V in (11), where V0[.] denotes the variance matrix evaluated
at the true value h=h0 . Therefore, that Condition A8 holds follows from the Liapounov form of
the multivariate central limit theorem.
Next, we give a proof of the asymptotic Normality of the generalised estimating equation
estimators (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞. The proof is similar to that in Chiu et al. (1996) and below we only highlight

the points of difference. Note that h@
n
= (b@ ∞

n
, c@∞
n
, l@ ∞
n
)∞ is a consistent sequence of roots to the equations

so that S(h@
n
)=0. In a neighbourhood of h

0
= (b∞

0
, c∞
0
, l∞
0
)∞, the true value of h, we have that

1

√nGS1 (b)S
2
(c)

S
3
(l)H(b

0
,c
0
,l
0
)

=−V
nG√nAb@ n−b0c@

n
−c
0

l@
n
−l
0
BH , (A4)

where

V
n
=P 1
0

1

nq∂S∞(h)∂h r
h
f

df (A5)

with h
f
= (b∞

f
, c∞
f
, l∞
f
)∞= (b∞

0
+f(b@

n
−b
0
)∞, c∞
0
+f(c@

n
−c
0
)∞, l∞
0
+f(l@

n
−l
0
))∞. Using Conditions A5–A7

we obtain

−V
n
�Av11 0 0

0 v22 0

0 0 v33B(b
0
,c
0
,l
0
)

.
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941Modelling of covariance structures

We apply Condition A8 to (A4) and (A5) and then obtain the conclusion stated in Theorem 2.
The proof is complete. %
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